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Introduction

 

❏

 

Digital CMOS is hardly the ideal medium for RF ICs. 
But is it hopelessly inferior?

 

❏

 

Interesting question: How well can one do in such a 
technology if one tries very hard?

 

❏

 

Scaling delivers faster devices every year; eventually, they’ll 
be fast enough.

 

❏

 

Is the substrate really so big a problem that good inductors 
(and capacitors) simply cannot be realized?

 

❏

 

Is device noise so large that CMOS LNAs will always be 
HNAs?

 

❏

 

Does the inferior 1/f noise of CMOS transistors doom the 
close-in phase noise performance of oscillators?

 

❏

 

Can you 

 

really 

 

build credible RF ICs in standard digital 
CMOS?
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Outline

 

❏

 

A few brief words on scaling trends

 

❏

 

The patterned ground shield spiral inductor

 

❏

 

Capacitors

 

❏

 

Fractal capacitors

 

❏

 

Accumulation mode varactors

 

❏

 

Passive mixers

 

❏

 

Broadband noise models for the deep submicron regime

 

❏

 

Power-constrained LNA design

 

❏

 

A new phase noise theory and its implications for 1/f 
noise upconversion

 

❏

 

Putting it all together: A 115mW single chip GPS receiv-
er in 0.5

 

µ

 

m CMOS
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Scaling Trends in Brief

 

❏

 

CMOS f

 

T

 

 (and f

 

max

 

) are in the range of 30GHz now, and 
double roughly every three years.

 

❏

 

Devices with ~75

 

n

 

m L

 

eff

 

 have been demonstrated, and 
exhibit ~150GHz f

 

T

 

!

 

❏

 

CMOS suffers from large source/drain parasitics, com-
pared with other technologies.

 

❏

 

Gate-drain “overlap” capacitance is also large.

 

❏

 

Series gate resistance is also an increasingly serious 
problem as gate lengths continue to shrink, but can be 
accommodated by using narrower unit devices.

 

❏

 

Salicided gates help, too.

 

❏

 

Interconnect layers increasing at ~0.75 to 1 level per gen-
eration (5 layers are now relatively common).
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Passive Elements: Planar Spiral Inductors

 

❏

 

Planar spirals in Si technology are infamous for poor Q 
(typically well below 10).

 

❏

 

Conductor resistance, exacerbated by skin and proximi-
ty effects, typically accounts for about half the loss.

 

❏

 

Applies to both bulk and epi technologies.

 

❏

 

The remaining loss is primarily due to currents flowing 
in the substrate.

 

❏

 

Getting rid of the substrate would work wonders (e.g., post-
fab etch, SOA, etc.), but requires deviation from ordinary 
process technology.

 

❏

 

Next-best choice is to use a high-resistivity substrate, but 
can’t do so without sacrificing other CMOS characteristics.

 

❏

 

Next next-best choice is to construct a 

 

pseudo-substrate

 

 out 
of existing interconnect layers.
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Passive Elements: Planar Spiral Inductors

 

❏

 

Most of the substrate loss is 

 

not

 

 due to the flow of mag-
netically induced eddy currents, contrary to widespread 
superstition.

 

❏

 

Main mechanism is simply current flow into the sub-
strate through the parasitic capacitance between induc-
tor and substrate.

 

❏

 

Grounded shield interposed between inductor and sub-
strate diverts this current into ground.

 

❏

 

Slots cut into ground shield prevent loss in shield due to 
eddy currents.

 

❏

 

Drawback is a reduction in self-resonant frequency due to 
increase in parasitic capacitance (can mitigate this by using 
higher-level metal layers).
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Model Description
Physical Model of Inductor on Silicon Effects
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• Pattern

- Orthogonal to spiral 

(induced loop current)

• Resistance

- Low for termination of 

the electric field

- Avoid attenuation of 

the magnetic field

Patterned Ground Shield Design

Ground Strips

Slot between Strips

Induced Loop Current
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Parallel LC Resonator at 2 GHz
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Noise Coupling Measurement
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Passive Elements: Capacitors

 

❏

 

Ordinary parallel plate structures don’t scale with tech-
nology because the vertical spacing is held roughly con-
stant to keep interconnect capacitance small.

 

❏

 

Bottom-plate parasitics are large (e.g., 30% of main ca-
pacitance).

 

❏

 

Gate capacitors are area efficient, but impose bias con-
straints, and are not as linear as MIM structures.

 

❏

 

Traditional varactor options (e.g., p+ in n-well) have 
poor Q

 

❏

 

Gate capacitors in accumulation-mode are an attractive alter-
native (Q values in excess of 100 at 1GHz are potentially re-
alizable)



Vertical vs. Lateral Flux

Lateral flux increases the total amount of capacitance.



Reduction of the Bottom-Plate Capacitance

First Terminal

First Terminal

Substrate

Second Terminal

Second Terminal

Area is smaller.

Some of the field lines terminate on the adjacent
plate instead of the substrate.



Die Micrograph

Horizontal spacing=0.6 µm
Vertical spacing=0.8µm
Area=24,000 µm2



Boost Factor vs. Lateral Spacing
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High-frequency two-port measurements

Measurements
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Passive Elements: Capacitors

 

❏

 

Accumulation-mode varactor (ref. Soorapanth et al., 
VLSI Circuits Symposium, June 1998):

 

❏

 

Compatible with standard CMOS processing

 

❏

 

Practical capacitance range exceeds 150%

n-well

n+ n+

p-substrate
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Passive Mixers

 

❏

 

Gilbert multiplier performs mixing in current domain 
because bipolar transistors are not good voltage switch-
es.

 

❏

 

Penalty: V-I conversion costs power and linearity

 

❏

 

CMOS voltage switches are excellent, so mixers made 
out of them work well:

 

❏

 

@1.6GHz: 3.6dB loss, +10dBm IIP3 achieved at 200

 

µ

 

W

LO LO

LOLO

vIF
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Simple CMOS Noise Model
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• Channel thermal noise is dominant.

• Gate resistance minimized by good layout.
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LNA Input Stage
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Induced Gate Effects
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• Gate Noise Current
• Real Component of Zg
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Equivalent Gate Circuit
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LNA Design Procedure

 

❏

 

Select device width roughly equal to (500

 

µ

 

m-GHz)/f

 

0

 

 
(for a 50

 

Ω

 

 system)

 

❏

 

Adjust bias to obtain desired power dissipation

 

❏

 

Keep V

 

DS

 

–V

 

DSAT

 

 as small as practical to minimize hot-elec-
tron effects (say, under half a volt or so)

 

❏

 

Select source degeneration inductance (assuming equal-
sized cascoding and main devices) according to:

 

❏

 

Add enough gate inductance to bring input to resonance

 

❏

 

Noise factor bound is 1 + 2.4(

 

γ

 

/

 

α

 

)(

 

ω

 

/

 

ω

 

T

 

), so scaling con-
tinues to help directly

LS

RS 1 2 Cgd Cgs⁄( )+[ ]⋅

ωT

≈



CIRCUITS: LNA / MIXER
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Measured LNA Noise Figure

NF = 2.4dB @ 1575MHz

Ibias = 4.9mA

Shahani, Shaeffer and Lee, ”A 12mW Wide Dynamic Range CMOS GPS Receiver,” ISSCC 1997



http://smirc.stanford.edu/papers/Orals98s-ali.pdf Email: hajimiri@smirc.stanford.edu

C Li(t)
δ t τ–( )

t

i(t)

t

Vout

t

Vout

Oscillators Are Time-Variant Systems

τ

Impulse injected at the peak of amplitude.

∆V

∆V

Even for an ideal LC oscillator, the phase response is Time Variant.

Impulse injected at zero crossing.
τ

τ
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Phase Impulse Response

φ t( )
hφ t τ,( )

0 t

i(t)

τ 0 τ

hφ t τ,( )
Γ ωoτ( )

qmax
-------------------u t τ–( )=

t

i t( )

The unit impulse response is:

Γ x( ) is a dimensionless function periodic in 2π, describing how much

phase change results from applying an impulse at time: t T
x

2π------=

The phase impulse response of an arbitrary oscillator is a time varying step.
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LC Oscillator Ring Oscillator

Impulse Sensitivity Function (ISF)

The ISF quantifies the sensitivity of every point in the waveform to perturbations.

Waveform

ISF
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c0
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0

2π

∫=

t

t

V out t( )

Γ ωt( )

Symmetric rise and fall time

t

t

V out t( )

Γ ωt( )

Asymmetric rise and fall time

Effect of Symmetry

The dc value of the ISF is governed by rise and fall time symmetry, and

controls the contribution of low frequency noise to the phase noise.
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1/f 3 Corner of Phase Noise Spectrum

ω
1 f
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The 1/f3 corner of phase noise is NOT the same as 1/f corner of device noise
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f
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ω 1
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By designing for a symmetric waveform, the performance
degradation due to low frequency noise can be minimized.
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A Symmetric LC Oscillator

Possible to Adjust Symmetry Properties of the Waveform

WN/L
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WN/L

WP/L

Adjust ratios
for symmetry



http://smirc.stanford.edu/papers/Orals98s-ali.pdf Email: hajimiri@smirc.stanford.edu

Complementary Cross-Coupled VCO
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GPS OVERVIEW: TYPICAL RECEIVER ARCHITECTURES

Distinguishing Features:

� Typical on-chip PD

is 100mW – 500mW

� Off-chip LNA or
active antenna

� Off-chip IF filtering

� 1 or 2 bit quantization

PLL

Off-Chip

2

1
- OR -

Dual-Conversion

2

PLL

Off-Chip

Single-Conversion



ARCHITECTURE: LOW-IF RECEIVER

Primary Goal: Make choices to minimize PD, maximize integration.

� Low-IF) On-chip
active channel filter.

� Image in GPS band )

Relaxed I/Q matching.

� Eliminate PLL prescaler

) Saves power / noise.

� 1-bit quantization
for simplicity.
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Signal Path
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APD=1.573384GHz
N*M*f0



CIRCUITS: IFA

� Low input capacitance, high linearity.

� Load resistors terminate the active filter input.
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CIRCUITS: GM-C FILTER (TRANSCONDUCTOR)

Use two square-law transconductors to build a linear, class-AB transconductor.
A little positive feedback (M10) compensates for mobility degradation in M1.
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EXPERIMENTAL RESULTS: NOISE FIGURE
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EXPERIMENTAL RESULTS: LINEARITY
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EXPERIMENTAL RESULTS: BLOCKING PERFORMANCE
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EXPERIMENTAL RESULTS: PLL SPURIOUS
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PERFORMANCE SUMMARY

Signal Path Performance PLL Performance
LNA Noise Figure 2.4dB Loop Bandwidth 5MHz
LNA S11 � -15dB Spurious Tones � -42dBc
Coherent Receiver NF 4.1dB VCO Tuning Range 240MHz (� 7.6%)
IIP3 (Filter-limited) -16dBm @ -43dBm Ps VCO Gain Constant 240MHz/V
Peak SFDR 57dB LO Leakage @ LNA < -53dBm
Filter Cutoff Freq. 3.5MHz
Filter PB Peaking � 1dB Power/Technology
Filter SB Atten. � 52dB @ 8MHz Signal Path 79mW

� 68dB @ 10MHz PLL / VCO 36mW
Pre-FilterGp 19dB Supply Voltage 2.5V
Pre-FilterAv 32dB
TotalGp � 82dB Die Area 11.2mm2

TotalAv � 107dB Technology 0.5�m CMOS
Non-Coherent Output SNR 15dB
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Closing Thoughts

 

❏

 

CMOS is not ideal, but much more than adequate for 
many applications.

 

❏

 

Scaling trends will continue to improve CMOS.

 

❏

 

“RF CMOS” is not an oxymoron anymore.
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