Low Phase Noise CMOS Ring Oscillator VCOs for Frequency Synthesis

July 27, 1998

Rafael J. Betancourt Zamora and Thomas H. Lee
Stanford Microwave Integrated Circuits Laboratory
Paul G. Allen Center for Integrated Systems
Department of Electrical Engineering
Stanford University
http://www-smirc.stanford.edu/
Outline

- Motivation
 - Phase Noise Theory
 - Voltage-controlled Oscillator Design
 - Conclusion and Acknowledgements
What is Phase Noise?

- Undesirable phase fluctuations due to intrinsic device noise
- Output power is not concentrated at the carrier frequency alone
- Phase noise is represented as a ratio of power in 1Hz bandwidth in one sideband to the power of the carrier.
- Specified in dBc/Hz at a frequency offset from the carrier.

\[L(\Delta f) = \frac{P_{SSB}}{P_C} \]

\[P_{SSB} \]

\[P_C \]

\[f_0 \]

\[f_0 + \Delta f \]

\[\frac{1}{f^2} \]

\[\frac{1}{f^3} \]

Noise Floor
Frequency synthesizers are implemented using phase-locked loops (PLLs).

Major sources of power dissipation are the VCO and the frequency divider.

Frequency reference is usually a crystal oscillator with very low phase noise.

A PLL tracks phase noise of the reference within its loop bandwidth, relaxing the close-in phase noise requirements of the VCO.

Typical CMOS PLL frequency synthesizer

A frequency-locked loop (FLL) synthesizer may not require a frequency divider.

A FLL tracks frequency, not phase making close-in phase noise of VCO more critical.

Biotelemetry application: 174-216MHz

Outline

- Motivation
- *Phase Noise Theory*
- Voltage-controlled Oscillator Design
- Conclusion and Acknowledgements
Oscillators are Time-Variant Systems

- Current impulse injected at the peak changes the amplitude and has no effect on the phase.

- Current impulse injected at zero-crossing changes the phase and has minimal effect on the amplitude.

Phase Impulse Response

\[h_{\phi}(t, \tau) = \frac{\Gamma(\omega_0 \tau)}{q_{\text{max}}} u(t - \tau) \]

- Impulse Sensitivity Function \(\Gamma(x) \) is periodic.
- \(q_{\text{max}} \) is the maximum charge displacement in the tank.
Impulse Sensitivity Function for Ring Oscillators

\[\phi(t) = \frac{1}{q_{max}} \left[\frac{c_0}{2} \int_{-\infty}^{t} i(\tau) \, d\tau + \sum_{n=1}^{\infty} c_n \int_{-\infty}^{t} i_n(\tau) \cos(n\omega \tau) \, d\tau \right] \]

- \(\Gamma(\chi) \) is calculated from the output waveform.
- \(\Gamma(\chi) \) is expressed as a Fourier series and used to determine the phase noise resulting from noise sources.
- High sensitivity to noise at the transitions of the output
- Phase noise close to the carrier results from the folding of device noise centered at integer multiples of the carrier frequency.
- Upconversion of device $1/f$ noise occurs through Γ_{dc}, the DC value of the ISF.
- Γ_{dc} is governed by the symmetry properties of the waveform.
Hajimiri Phase Noise Model

- Phase Noise in $1/f^3$ region is due to device $1/f$ noise.
- It is commonly assumed that the $1/f^3$ corner of phase noise is the same as the $1/f$ corner of the device noise spectrum. This is NOT the case.

$$L(\Delta \omega) = 10 \cdot \log \left\{ \frac{\Gamma_{rms}^2 \cdot \frac{i_n^2}{q_{max} \cdot 2 \cdot \Delta \omega^2}}{\Gamma_{dc}^2} \right\}$$

Calculation of Γ_{rms} and Γ_{dc} for Ring Oscillators4,5

\[
\Gamma_{dc} = \frac{1}{2\pi} \int_0^{2\pi} \Gamma(x) dx
\]

\[
\Gamma_{rms} = \frac{1}{2\pi} \int_0^{2\pi} \Gamma^2(x) dx
\]

\[
\frac{\Gamma^2_{dc}}{\Gamma^2_{rms}} = \frac{3}{2N} \cdot \frac{(1 - \beta)^2}{(1 - \beta + \beta^2)}
\]

\[
\beta = \frac{S_{rise}}{S_{fall}}
\]

- S is the maximum slope of the normalized output waveform
- N is the number of stages

Outline

- Motivation
- Phase Noise Theory
- *Voltage-controlled Oscillator Design*
- Conclusion and Acknowledgements
Voltage-controlled Oscillator Design

- Use buffers with replica-feedback biasing.
- NMOS differential pairs with linear PMOS loads.
- V_{ctl} changes the bias I_{dd} of the buffers.
- Replica bias ensures loads are mostly in their linear region by forcing the maximum single-ended swing $V_s = V_{dd} - V_{ctl}$
- Frequency is controlled by changing the bias of the buffers and hence the delay through each cell.
- Power dissipation is determined by frequency and phase noise required.
Power Dissipation of Differential Ring Oscillator

\[P = 2N^2 C_L V_{dd} V_s f \]

- \(N \) is the number of stages
- \(C_L \) is the total load capacitance at each buffer
- \(V_s \) is the maximum single-ended swing
- \(V_{dd} \) is 3.3V
Phase Noise of Differential Ring Oscillator

\[L\{\Delta f\} \geq \frac{18kTV_{dd}}{\pi^2 P} \cdot \left(\frac{2.5}{E \cdot L_{\text{eff}}} + 1\right) \cdot \left(\frac{f_o}{\Delta f}\right)^2 \cdot N \]

Lower bound on phase noise in the \(1/f^2\) region

- Minimum length short-channel differential pair devices
- \(L_{\text{eff}} = 0.5\mu\text{m}\)
- \(E_c = 5.6 \times 10^6\text{V/m}\)
Phase Noise vs. Power Dissipation

Selected $W_n=6\mu m$ for 200MHz at 2.1dBm (1.6mW), -90dBc/Hz @ 100KHz
Differential Buffer Topology

Clamped load
- Excellent supply rejection6.
- The cross-coupled loads make delay insensitive to common-mode noise.

Symmetric load
- Good supply noise rejection.
- Used extensively in PLL and clock generators7.

Cross-coupled load
- Sweep width of cross-coupling devices with fixed total width ($W_1 + W_2 = W_3 = 6\, \mu m$) of the loads.
- Maximum symmetry for $W_1 = W_2 = 0.5W_3$

Comparison of Phase Noise

- Assumed $f_{1/f} = 3$MHz
- $1/f^2$ regions are within 2.6dB as expected for similarly sized noise sources.
- $1/f^3$ corner for cross-coupled load buffer is 20 times lower than that of the clamped load.
- Good agreement with measurements previously reported for clamped load

<table>
<thead>
<tr>
<th>Oscillator</th>
<th>$1/f^3$ corner</th>
<th>$L{100\text{KHz}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Clamped Load</td>
<td>137KHz</td>
<td>-75dBc/Hz</td>
</tr>
<tr>
<td>(b) Symmetric Load</td>
<td>36KHz</td>
<td>-77dBc/Hz</td>
</tr>
<tr>
<td>(c) Cross-coupled Load</td>
<td>6.5KHz</td>
<td>-80dBc/Hz</td>
</tr>
</tbody>
</table>
Conclusions and Acknowledgements

- A design technique based on the Hajimiri model was presented for the design of low phase noise VCOs.

- We compared the phase noise performance of three differential buffer stages.

- We proposed a cross-coupled load buffer that achieves lower phase noise in the $1/f^3$ region by exploiting single-ended symmetry in the oscillator’s waveform.

- This work was partially supported by NASA-Ames Research Center through a Training Grant No. NGT 2-52211.

- We wish to thank Ali Hajimiri, and Miguel Gabino-Perez for their assistance.