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Introduction

O Physics of propagation guarantee little terrestrial wire-
less activity much above ~5 GHz.

d Continued improvements in Si technology have made
GHZz circuits feasible, even in CMOS.

[ Bad News: Traditional RF designs have large ratio of
passive to active devices.

d Infamous planar spiral inductors have poor Q, and don’t
scale in size as transistors do.

[ Traditional parallel-plate capacitors (needed for linearity)
do not scale either.
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Lateral Flux Capacitors

A Linear, dense capacitors are available in deep submi-

cron technologies if lateral flux is used to augment verti-
cal flux
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Structure is MIM capacitor: no special processing required
3-10x boost in capacitance per unit area
Parasitic bottom plate capacitance reduced by same factor

Substrate loss and noise coupling attenuated by large fac-
tors

Pretty die photos
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r"_ Fractal Capacitors : Hirad Samavati, Thowas Lee
Layout Issues

® Cross connected

|
|

® “qntrol over the final shape
_Correct choice of the initiator and the generator

e Capacitance per unit area vs. series resistance

- Fractal dimension
- Average width of metal
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o Fractal Capacitors : Hirad Samavati, Thomas Lee

Vertical Flux vs. Lateral Flux
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Lateral-Flux Capacitor (LFC)
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Improved Inductors in Si Technology

A Scaling problem is fundamentally intractable, unfortu-
nately, because its solution requires 3D structures

1 Increasing number of interconnect layers helps, however.

1 Can significantly improve inductor Q, without depart-
ing from ordinary technology.

0 Skin effect/proximity effect conductor losses are ~fixed.

d Eddy (image) currents magnetically induced in substrate are
relatively unimportant. Can build inductor over alternating
well/substrate wedges to reduce this loss further in any case.

1 Displacement currents flowing into lossy substrate through
parasitic capacitance between inductor and substrate can be
suppressed through the use of a patterned ground shield (Yue
and Wong, 1997), nearly doubling the Q of resonators.

CMOS ICs for Wireless Systems pr—
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Improved Inductors

N-Well

P-Substrate

O Alternating wedges of N-well and substrate underneath
the inductor force image currents to flow farther away.

3 Circulating currents to depth of well are inhibited by back-
biased PN junctions.

CMOS RF Integrated Circuitls

Prof. Tom Lee, Stanford University Center for Integrated Systems



Electromagnetic Fields of
Conventional On-Chip Inductors
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Model Description

Physical

Physi
ysical Model of an Inductor on Silicon P na

Mutual Coupling

Eddy Current

Feed-Through
Capacitance

Onide
Capacitance

8i Substrate
Capacitance

Si Substrate
Ohmic Loss




Patterned Ground Shield Design

o Pattern

= Orthogonal to spiral

(induced loop current)

* Resistance

= Low for termination of

the electric field mmmm Ground Strips
= Avoid attenuation of —— Slot between Strips

the magnetic field —— Induced Loop Current
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Noise Coupling Measurement

HP 87208

Probe Station



Effect of Polysilicon Ground Shield on

Noise Coupling
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Low-Noise Amplifiers

1 Power- (actually, current-) constrained noise optimiza-

tion method is key breakthrough.

1 For a specified allowed power budget, method yields best

LNA noise figure subject to constraint of perfect input

match.

1 Method yields optimum device size, unlike any other noise

theory. Value is about 750um-GHz.

[ Noise figures for single-ended LNAs are approximately
1.5dB at 1.6GHz in 0.35um processes on ~10mW bud-

gets.

(1 Improves with scaling.

1 Differential LNAs recommended for on-chip environments
to improve noise rejection and ease packaging constraints.

O Tradeoff is doubling of power for same noise figure as single-end-

ed circuit.
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How To Get 50€2
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Resistive Termination

Dual Feedback

Z, = A\ RflRfZ Z,=R,
Need high gain. Poor NF.
Stability problems.
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LNA Input Stage
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Induced Gate Effects

Induced Current

Noisy Channel
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Equivalent Gate Circuit
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* 0 (~4/3) modified by hot electron effects
« i2 partially correlated with i (c = 0.395)

* i; and g, not modeled in HSPICE
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Epi Noise

J Additional broadband noise source is the modulation of
the back gate by the substrate resistance’s thermal noise

'J A more rigorous analysis reveals that this additional
source may be neglected as long as the effective resis-
tance from the back gate to an incremental ground is
less than about 2Rq.

3
J

Generally trivially satisfied in bulk technologies

In stubborn cases, some epi processes may require the use of
subdivided input devices with liberal substrate contacts dis-
tributed throughout

Wide Dynamic Range CMOS RF Circuits




LNA Design Procedure

1 Select device width roughly equal to (750um-GHz)/f,
(for a 50€2 system)

J Adjust bias to obtain desired power dissipation

1 Keep Vps—-Vpsat as small as practical to minimize hot-elec-
tron effects (say, under half a volt or so)

1 Select source degeneration inductance (assuming equal-
sized cascoding and main devices) according to:

zRS- [l+2(ng/Cgs)]

s
©

L

L

Add enough gate inductance to bring input to resonance

L

Noise factor bound is 1 + 2.4(y/a)(w/wy), so scaling con-
tinues to help directly

CMOS RF: No Longer an Oxymoron [re—
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CMOS LNAs

d Scaling continues to help. For single-ended LNAs, one
can expect the following:

d <2 dB NF at 5 mW achievable in 0.35 pym @ 1.5 GHz.
d < 1.5dB NF at 5 mW achievable in 0.35 pm @ 900 MHz.

d These values assume negligible second-stage contribu-
tions, as well as relatively low loss in input tuning in-
ductors.

CMOS RF: No Longer an Oxymoron
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Wide Dynamic Range Passive Mixers

J

L O

4

Gilbert cells used in bipolar technology because switch-
ing currents is easier there than switching voltages

1 Tradeoff is degraded linearity/power because of V-1 conver-
sion step

CMOS has good switches so rationale for Gilbert cell as
mixer is not as strong

Have achieved conversion loss of < 4 dB at 1.6GHz.

Measured SSB NF of < 10 dB, input 1P3 >10 dBm, at
“zero” power consumption

d  ~200uW power consumption dominated by LO drive power,
and can be reduced further if gate capacitance is resonated
out.

Lack of DC bias implies no 1/f noise (important for di-
rect-conversion and very-low-IF architectures)

Prof. Tom Lee, Stanford University Center for Integrated Systems
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Time-Varying Phase Noise Theory

J Have developed quantitative phase noise model.

O Acknowledges that oscillators are periodically time-varying
linear systems.

d Re-interprets Leeson model in some areas, refutes it in
others.

d Key insights:

O Ideal oscillator is one which returns energy to resonator in
impulsive fashion, timed precisely to coincide with voltage
peak.

[ Device 1/f noise need not upconvert into close-in phase
noise; can suppress such upconversion if certain previously
unappreciated symmetry criteria are satisfied.

0 Good news for technologies with notoriously poor 1/f perfor-
mance, such as MOSFETs and MESFETs.

CMOS ICs for Wireless Sysiems
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Ali Hejimiri, Thomas Lee

Phase Noise / Jitter in Oscillators

Current Impulse Input

i®,
o (t—1) I
1 Q) i) —=C <§ L [mu.my|

T

T t

Phase error persists over time.
Non-linearity quenches amplitude changes over time.

Impulse injgcled ata
Limit v Vou Only Amplitude Change
Cycle dt -
P \ ~
\/ |
| . v
0 - Impulse injected at b
Vou Only Phase Change
/ AV
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AN Hejimivi, Thomas Loo

Phase Nuise / Jitter in Oscillators

Current lmpulse Input
i(t)

A S(1-7)

1 9>i(n) %c %L rn...n},.,l

Phase error persists over time.

Non-linearity quenches amplitude changes over time.
Impulse injected at a
Limit v R Only Amplitude Change

Cycle dt '
AT /\ "
\J |

a |4
0 - Impulse injected at b
p Only Phase Change
S \V* .

5 \
»y N %

- 13
r
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f'Phase Noise / Jitter in Oscillators Ali Hajimivi, Thoweas Le¢

Impulse Sensitivity Function (ISF)

V.. LC Oscillator V. (1) Ring Oscillator

ANANA
\/\/\/ U Uy

(o) I'(wr)

ANVANYVANE. N ) G D
VARV vV

I'(wt) can be directly calculated from the waveform.

Note that although the transfer function from i,(1)to ¢(?) is linearized, the model
still takes into account the effect of non-linear elements in the circuit, through the
function T'(wt)

\- Stanford University



rPhase Noise / Jitter in Oscillators Ali Hajimiri, Thomas Lee

Major Contributors to Phase Noise

max

o(t) = ql [%0 j i(t)dt+ z c, j in(T)COS(n(DT)dT]

—o00 n=1 —o0

l Noise

N(f)

Sv(Oo)A

f 2fo 3/
0
\- Stanford University —




fPhase Noise / Jitter in Oscillators - Ali Hajimiri, Thomas Lee

Effect of Symmetry on Low Frequency Noise Upconversion

2n
Co = %If(x)dx
0

V(1) Symmetric Ring Oscillator v, (1) Asymmetric Ring Oscillator

ANARAIRrANAWAN
URURUEER VRV VS

A
vor v |

The DC value of ISF, which is governed by symmetry properties of
the waveform, controls the contribution of low frequency noise to
the phase noise

\- Stanford University —e




A 0.5mW, 1.6GHz CMOS LC Low Phase Noise VCO using Bond Wires

Basic Design Configuration

Wp =2 x Wn :I >< I

LC Tank [——

=<
:
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1.6GHz
Power 0.5mW at 2.0V supply

Frequency

Phase Noise -95dBc/Hz
(100kHz ofiset)
Tuning Range 130MHz

Process Technology 0.5-um MOSIS

standard CMOS

Tamara |. Ahrens B Center for Integrated Systems B Department of Electrical Engineering B Stanford University 130of 17




A 0.5mW, 1.6GHz CMOS LC Low Phase Noise VCO using Bond Wires

Phase Noise
Technology Frequency Power @100kHz FOM

[7] Bipolar 1.6GHz 3mW  -95.1dBc/Hz 212dBF

CMOS 1.6GHz 0.5mW -95dBc/Hz 220dBF

Figure of Merit = 10 log (Freg/(Phase Noise x Power))

A

Tamara I. Ahrens B Center for Integrated Systems B Department of Electrical Engineering B Stanford University 14 of 17



CMOS Oscillators

J Ring oscillators are popular CMOS idioms, but suffer
from high phase noise-power product.

1 Typical value is -75 dBc/Hz @ 100 kHz offset @ 1 GHz, 1 mW.
1 Improves 10 dB with every 10 dB power increase.

[ Values can be worse because of inferior 1/f noise of CMOS
devices.

1 At a given level of phase noise, a ring oscillator will
consume approximately Q times the power of a tuned
oscillator.

d  On-chip Q values limited to < 5-10; power reductions are
nevertheless significant.

d Bondwires have Q > 50; dramatic improvement possible.

d  -90-100 dBc/Hz phase noise at 100 kHz offset theoretically possi-
ble with ~1 mW power consumption if tuned oscillator is used.

CMOS RF: No Longer an Oxymoron
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A'O.SmW, 1.6GHz CMOS LC Low Phase Noise VCO using Bond Wires

Die Photo and Packaging

Bond Wire Inductor

v/

die

package .

N . I -
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Putting it all Together

J Examples of CMOS receivers/ transmitters accumulate.
J Berkeley (ISSCC “97): DECT (1.9GHz) receiver
d ~20dB overall NE, 200mW power consumption

d  Synthesizer not included

d UCLA (ISSCC “97): 900MHz frequency-hopped spread-
spectrum transceiver

1 ~8-10dB overall NE 360mW consumption in receive mode
d  Synthesizer not included

d Stanford (ISSCC “98): 1.6GHz GPS receiver
1 4.9dB measured overall NE, 115mW power consumption
A 57dB overall SFDR (measured)

1 Includes synthesizer, filters, 1/Q downconversion, “A/D”s

CMOS ICs for Wireless Systems

Prof. Tom Lee, Stanford University Center for Integrated Systems



Closing Thoughts

\

4

J

3

CMOS will soon dominate below 5GHz, except in PAs
because:

CMOS fr doubling every three years
J At present, 30GHz max fr (50GHz Jnax) 18 state of the art

J  Experimental 150GHz f; devices have been demonstrated

Number of interconnect levels continues to increases
slowly

J  Presently, 5 layers are not uncommon
Substrate problems are not nearly as great as perceived

' Quality of passive elements now comparable to GaAs

1 Extra interconnect layers continue to help

Device and oscillator noise continue to improve

\‘ CMOS RF: Not an Oxymonm Anymon H
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