CMOS Operational Amplifier Design and Optimization via Geometric Programming

Maria del Mar Hershenson

Stephen Boyd, Thomas H. Lee

Electrical Engineering Department Stanford University

July 28, 1997

Main Idea

- Many op-amp design problems can be cast as a special type of convex optimization problems.
- Such problems can appear very difficult, but can be solved **very efficiently** by recently developed interior-point (IP) methods.

Outline

- Convex Optimization
- Posynomial Functions
- Geometric Programming
- Application to a Two-Stage Operational Amplifier
- Results
- Conclusions

Convex Optimization

minimize
$$f_0(x)$$

subject to $f_1(x) \leq 0, \dots, f_L(x) \leq 0, \quad Ax = b$

- $x \in \Re^n$ is optimization variable
- f_i are convex:

for
$$0 \le \lambda \le 1$$
,
 $f_i(\lambda x + (1 - \lambda)y)$
 $\le \lambda f_i(x) + (1 - \lambda)f_i(y)$

Convex Optimization problems are fundamentally tractable

- computation time is small, grows gracefully with problem size and required accuracy
- large problems solved quickly in practice
- what "solve" means:
 - find **global** optimum within a given tolerance, or,
 - find **proof** (certificate) of infeasibility

Posynomial Functions

$$f(x_1, \dots, x_n) = \sum_{k=1}^{t} c_k x_1^{\alpha_{1k}} x_2^{\alpha_{2k}} \cdots x_n^{\alpha_{nk}}$$

- f is a real-valued function of n real, positive variables $x = (x_1, x_2, \dots, x_n)$.
- $c_j \geq 0$ and $\alpha_{ij} \in \Re$.
- If t = 1, f is called a **monomial** function.
- If f is a posynomial function, $\frac{1}{f}$ is called an inverse-posynomial function.
- Posynomials are closed under sums, products, and nonnegative scaling.

Posynomial Functions: Examples

• Posynomial

$$f_1 = 3x_1^{-0.3} + x_2^{1.3}x_3^{4.1}x_5 + .25x_1^{14}x_3^{-0.8}x_4^2$$

• Mononomial

$$f_2 = .25x_1^{14}x_3^{-0.8}x_4^2$$

• Inverse Posynomial

$$f_3 = \frac{1}{3x_1^{-0.3} + x_2^{1.3}x_3^{4.1}x_5 + .25x_1^{14}x_3^{-0.8}x_4^2}$$

Geometric Programming

minimize
$$f_0(x)$$

subject to
$$f_i(x) \leq 1, \quad i = 1, \dots, m$$
 $g_i(x) = 1, \quad i = 1, \dots, p$ $x_i > 0, \qquad i = 1, \dots, n$

where f_i are posynomial functions and g_i are monomial functions.

The objective function $f_0(x)$ can be monomial or posynomial.

Geometric Programming

We can

- minimize any posynomial or monomial function
- or *maximize* any inverse-posynomial or monomial function

subject to

- upper-bounded posynomial functions
- lower-bounded inverse-posynomial functions
- upper and/or lower-bounded monomial functions.

Dimension Constraints

Minimum Device Sizes → Monomial

$$L_i \ge L_{\min}$$
 and $W_i \ge W_{\min}$

• Area — Posynomial

Area =
$$\alpha_1 C_c + \alpha_2 \sum_i W_i L_i$$
.

• Systematic Input Offset Voltage \longrightarrow Monomial

$$\frac{(W/L)_3}{(W/L)_6} = \frac{1}{2} \frac{(W/L)_5}{(W/L)_7}$$
$$\frac{(W/L)_4}{(W/L)_6} = \frac{1}{2} \frac{(W/L)_5}{(W/L)_7}.$$

Bias Conditions

 \bullet Additional variables \longrightarrow **Monomial**

$$I_5 = \frac{W_5 L_8}{L_5 W_8} I_{\text{bias}}$$
 $I_7 = \frac{W_7 L_8}{L_7 W_8} I_{\text{bias}}$ $I_1 = \frac{I_5}{2}$

• Transistors in saturation \longrightarrow **Posynomial** (Transistors M_1 and M_2)

$$\sqrt{\frac{I_1 L_3}{\mu_{\rm n} C_{\rm ox}/2W_3}} \leq V_{\rm cm,min} + V_{\rm ss} - V_{\rm TP} - V_{\rm TN}$$

• Quiescent Power —>Posynomial

$$P = (V_{\rm dd} + V_{\rm ss}) (I_{\rm bias} + I_5 + I_7)$$

Transfer Function (I)

 \bullet Open Loop Gain \longrightarrow **Monomial**

$$A_v = \left(\frac{g_{\rm m2}}{g_{\rm o2} + g_{\rm o4}}\right) \left(\frac{g_{\rm m6}}{g_{\rm o6} + g_{\rm o7}}\right)$$

• 3-dB Cutoff Frequency \longrightarrow **Monomial**

$$\omega_{3\mathrm{dB}} = \frac{-g_{\mathrm{m1}}}{A_{\mathrm{v}}C_{\mathrm{c}}}$$

 \bullet Unity Gain Frequency \longrightarrow **Monomial**

$$\omega_{\rm c} = \frac{g_{\rm m1}}{C_{\rm c}}$$

Transfer Function (II)

Phase Margin Conditions → Posynomial

$$\frac{\omega_{\mathrm{c}}}{p_2} + \frac{\omega_{\mathrm{c}}}{z_1} \le \frac{\pi}{2} - \mathrm{PM}_{\mathrm{min}}$$

or

$$\frac{\omega_{\rm c}}{p_2} + \frac{\omega_{\rm c}}{p_3} \le \frac{\pi}{2} - \text{PM}_{\min}$$

Slew Rate

• Slew Rate → **Posynomial**

$$SR = \min \left(\frac{2I_1}{C_c}, \frac{I_7}{C_c + C_L} \right)$$

A constraint on slew rate can be written as

$$\frac{C_{\rm c}}{2I_1} \leq \frac{1}{\rm SR_{\rm min}}$$

$$\frac{C_{\rm c} + C_{\rm L}}{I_7} \leq \frac{1}{\rm SR_{\rm min}}$$

Noise

• Input-referred Noise Spectral Density —>Posynomial

$$S_{i}(f) = \frac{v_{in}^{2}}{\Delta f} = \frac{2K_{p}}{C_{ox}W_{1}L_{1}} \left(1 + \frac{K_{n}\mu_{n}L_{1}^{2}}{K_{p}\mu_{p}L_{3}^{2}}\right) \frac{1}{f}$$

$$+ \frac{16kT}{3\sqrt{2\mu_{p}C_{ox}(W/L)_{1}I_{1}}} \left(1 + \sqrt{\frac{\mu_{n}(W/L)_{3}}{\mu_{p}(W/L)_{1}}}\right)$$

• Total Input-referred Noise—>Posynomial

$$\overline{v_{\text{INT}}^2} = \int_{f=0}^{f=f_{\text{n}}} S_{\text{i}}(f) df \approx \sum_{f=0}^{f=f_{\text{n}}} S_{\text{i}}(f) \Delta f$$

Other Constraints

- \bullet Symmetry \longrightarrow **Monomial**
- Matching Conditions—>Monomial
- $CMRR \longrightarrow Monomial$
- Gate Overdrive → Monomial
- Poles and Zeros → Inverse-Posynomial

• . . .

Optimal Trade-off Curves (I)

Unity gain bandwidth versus power for different supply voltages

Optimal Trade-off Curves (II)

Maximum unity gain frequency versus power for different output voltage ranges

Optimal Trade-off Curves (III)

Maximum gain versus unity gain frequency for different phase margins

Optimal Trade-off Curves (IV)

Maximum open loop gain versus phase margin for different unity gain frequencies

Optimal Trade-off Curves (V)

Maximum open loop gain versus unity gain frequency for different load capacitances

Conclusions

Geometric Programming problems

- Arise in *many* important *analog circuit* design problems, in particular *CMOS op-amp* design.
- Can be (globally, efficiently) solved.

We can

• automatically, directly from specifications, optimally design CMOS op-amps.

Acknowledgments

We gratefully acknowledge Edo Walks, who wrote the geometric programming code.

Final thought ...

... the great watershed in optimization isn't between linearity and nonlinearity, but convexity and nonconvexity.

— R. Rockafellar, SIAM Review 1993