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CMOS Op-Amp Design and Optimization via G.P.

Main Idea

e Many op-amp design problems can be cast as a special type of

convex optimization problems.

e Such problems can appear very difficult, but can be solved very
efficiently by recently developed interior-point (IP) methods.
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CMOS Op-Amp Design and Optimization via G.P.

Outline

e Convex Optimization
e Posynomial Functions

e Geometric Programming

e Results

e Conclusions

N

e Application to a Two-Stage Operational Amplifier
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CMOS Op-Amp Design and Optimization via G.P.

Convex Optimization

minimize  fo(x)
subject to  fi(x) <0,...,fr(z) <0, Az =

e r € R" is optimization variable

e f, are convex:

N 1-A) f /

fOI’ O S )\ S 17
fidz+ (1= Ny)
< Afi(z)+ (1 =N fi(y)
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Convex Optimization problems are

fundamentally tractable

e computation time is small, grows gracefully with problem size

and required accuracy
e large problems solved quickly in practice
e what “solve” means:

— find global optimum within a given tolerance, or,

— find proof (certificate) of infeasibility
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CMOS Op-Amp Design and Optimization via G.P.

Posynomial Functions

\ scaling.

t

flxe, ... 2,) = chx‘flkxg% e gk

k=1

e f is a real-valued function of n real, positive variables

r = (x1,T2,...,Tn).
e ¢c; >0 and o;; € .

o If ¢t =1, f is called a monomzial function.

1

e If f is a posynomial function, + is called an

" f

tnverse-posynomial function.

e Posynomials are closed under sums, products, and nonnegative
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CMOS Op-Amp Design and Optimization via G.P. \

Posynomial Functions: Examples

e Posynomial

f1 =327"% + x3325 ey + 2527 23 0% 0)

e Mononomial

—0.8_.2
fo = 2527 x5 " %]
e Inverse Posynomial

1

fs = =
3x7°° + xd3zdles + 25214y 002
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CMOS Op-Amp Design and Optimization via G.P. \

Geometric Programming

minimize  fo(x)

subject to  fi(z) <1, i=1,...,m
1

gi(z)
x; > 0, 1=1,...,n

where f; are posynomzial functions and g; are monomzial functions.

The objective function fo(z) can be monomial or posynomial.
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CMOS Op-Amp Design and Optimization via G.P.

Geometric Programming

e minimize any posynomial or monomial function

e Oor maximize any inverse-posynomial or monomial function
subject to

o upper-bounded posynomial functions

e lower-bounded inverse-posynomial functions

e upper and/or lower-bounded monomial functions.
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CMOS Op-Amp Design and Optimization via G.P.
Two-Stage Operational Amplifier
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CMOS Op-Amp Design and Optimization via G.P. \

Dimension Constraints

e Minimum Device Sizes—Monomial

Li Z Lmin and Wi Z Wmin

e Area —Posynomial

Area = a1 C, + as Z W, L;.

e Systematic Input Offset Voltage —> Monomial
(W/L); _ 1 (W/L);

(W/L)s 2 (W/L)
(W/L), _ 1 (W/L),

(W/L)g 2 (W/L);
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CMOS Op-Amp Design and Optimization via G.P.

Bias Conditions

e Additional variables — Monomial

W5 L8 W7L8 I5

= —— Ibias I Ihias Iy = —
L5W8 b 7 b 1

I _ T8
> LWy 2

e Transistors in saturation —Posynomial
(Transistors M; and M)

I L3
,U/ncox/2W3

Vem,min + Vss — VP — VN

e Quiescent Power — Posynomial

N

P = (Vaa + Vas) (Ibias + Is + I7)
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CMOS Op-Amp Design and Optimization via G.P. \

Transfer Function (I)

e Open Loop Gain —Monomial

gm?2 9mé6
A,
902 + go4 9do6 + go7

e 3-dB Cutoft Frequency —Monomial

w _ —0m1
3dB AVCC

e Unity Gain Frequency —Monomial

_ gm

We
Ce

. /

Maria del Mar Hershenson e Department of Electrical Engineering e Stanford University




CMOS Op-Amp Design and Optimization via G.P.

Transfer Function (II)

D2

or

We

D2

N

e Phase Margin Conditions —Posynomial

o o < __PMmln
+ 2

21

We

+_§g_PMmin

p3
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CMOS Op-Amp Design and Optimization via G.P.

~

Slew Rate

e Slew Rate —Posynomial

214 I,

SR = min C.'C. 1 On

A constraint on slew rate can be written as

C. 1
< -
2Il o SI{min
C.+ CL < 1
I’? a SRmin
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CMOS Op-Amp Design and Optimization via G.P.

Noise

e Input-referred Noise Spectral Density —Posynomial

2 2K Kou,L?\ 1
b - o ol
KpppLs

Si(f) — f

Af COXW1L1

16KT /'Ln(W/L>3
+3\/2/,LPOOX<W/L)111 (1 " \/,Up(W/L>1

e Total Input-referred Noise—Posynomial

f=Fa f=/n
oBog = /f S~ fZ:O Si(f)AS
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CMOS Op-Amp Design and Optimization via G.P.

Other Constraints

e Symmetry—Monomial

e Matching Conditions—>Monomial
¢ CMRR —Monomial

e Gate Overdrive —Monomial

e Poles and Zeros —Inverse-Posynomial
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CMOS Op-Amp Design and Optimization via G.P.

Optimal Trade-off Curves (I)
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CMOS Op-Amp Design and Optimization via G.P.
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CMOS Op-Amp Design and Optimization via G.P.

Optimal Trade-off Curves (III)
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CMOS Op-Amp Design and Optimization via G.P. \

Optimal Trade-off Curves (IV)

800 x w w r

— fc=50Mh
700 [ c=50 z
fc=100MHz

- — fc=150MHz

Maximum Open Loop Gain in kV/V

Il

0 |
20 30 40 50 60 70
Phase Margin in Degrees

Maximum open loop gain versus phase margin for different unity gain

\ frequencies /

Maria del Mar Hershenson e Department of Electrical Engineering e Stanford University
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Optimal Trade-off Curves (V)
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CMOS Op-Amp Design and Optimization via G.P. \

Conclusions

Geometric Programmaing problems

e Arise in many important analog circuit design problems, in

particular CMOS op-amp design.
e Can be (globally, efficiently) solved.
We can

e automatically, directly from specifications, optimally

design CMOS op-amps.
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Final thought ...

...the great watershed in optimization isn’t between

— R. Rockafellar, STAM Review 1993

N

~

linearity and nonlinearity, but convexity and nonconvexity.
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