Radio-Frequency Conversion and Synthesis (for a 115mW GPS Receiver)

Arvin Shahani

Stanford University

Overview

- GPS Overview
- Frequency Conversion
- Frequency Synthesis
- Conclusion

GPS Overview: Signal Structure

- Carrier frequency = 1.57542GHz
- Signal is below the noise floor at the antenna (P_S \approx -130dBm, P_N \approx -110dBm)
- Large processing gain (GPS data bit, $T_b = 20ms$; C/A code chip, $T_c \approx 1\mu s \longrightarrow G_P \approx 43dB$)

GPS Overview: Receiver Requirements

After power, the receiver's noise figure is most important! (not linearity or dynamic range) — must have an LNA

GPS Overview: Commercial Receivers

	Sony	GEC Plessey GP2010	SiRF GRF-1
Power	81mW (3V)	200mW (3V)	500mW (5V)
Chip NF	6.1dB	10dB	
Technology	15GHz Bipolar	Bipolar	
Missing	LNA, 2 Filters, PLL LF	LNA, 2 Filters, PLL LF	LNA, Filter

Frequency Conversion

- Performance Metrics
- Architectures
- Double-Balanced Passive CMOS Mixer

(with capacitive load)

• Die Photos + Measurement Results

Frequency Conversion: Performance Metrics

- Power
 - Most important parameter in architecture choice
- Noise Figure
 - LNA relaxes the maximum tolerable noise figure
- Linearity
 - Mixer should not be the limiting block for dynamic range
- Conversion Gain
 - Less important due to the presence of an LNA

Subsampling Mixer ϕ_3 ϕ_3 ϕ_1 ϕ_1 ϕ_1 ϕ_1 ϕ_1 ϕ_1 ϕ_2 ϕ_2 ϕ_2 ϕ_2 ϕ_2 ϕ_2 ϕ_2 ϕ_2 ϕ_2 ϕ_1 ϕ_2 ϕ_1 ϕ_2 ϕ_1 ϕ_1 ϕ_2 ϕ_2

Gilbert-Type Mixer

Potentiometric Mixer

Passive Mixer

Subsampling Mixer

Power	41mW (3.3V)
Noise Figure	47dB
IIP3	-16dBm
Voltage Conversion Gain	36dB
Technology	0.6µm BiCMOS
Die Area	3.6mm ²

- Noise figure and power consumption are too large
- Extraordinary demands are placed on the phase \bullet noise of the sampling clock

D.H. Shen, C. Hwang, B.B. Lusignan, and B.A. Wooley, "A 900-MHz RF front-end with integrated discrete-time filtering," IEEE J. Solid-State Circuits, vol. 31, pp. 1945-1954, Dec. 1996.

Potentiometric Mixer

Power	1.3mW (5V)
Noise Figure	32dB
IIP3	45.2dBm
Voltage Conversion Gain	18dB (12dBm LO)
Technology	1.2µm CMOS
Die Area	1mm ²

- Noise figure is too large
- If preceded by a 2nd LNA to improve the noise figure, then the cost is in power, linearity, and area

J. Crols and M. Steyaert, "A 1.5-GHz highly linear CMOS downconversion mixer," *IEEE J. Solid-State Circuits*, vol. 30, pp. 736-742, July 1995.

Gilbert-Type Mixer		
Power	7mW (2.7V)	
Noise Figure	9.7dB	
IIP3	-4.1dBm	
Power Conversion Gain	8.8dB	
Technology	0.5μm CMOS	
Die Area	0.14mm²	

Main advantage is in the conversion gain, but this costs power and linearity

A.N. Karanicolas, "A 2.7-V 900-MHz CMOS LNA and mixer," *IEEE J. Solid-State Circuits*, vol. 31, pp. 1939-1944, Dec. 1996.

Passive Mixer		
Power	< 500µW	
Noise Figure	6dB	
IIP3	9dBm	
Voltage Conversion Gain	-3dB	
Technology	0.5µm CMOS	
Die Area	pad limited	

• If gain can be postponed to the IF amplifier, this is the most attractive architecture

CMOS provides good voltage switches when transistors are operated in triode.

Local oscillator drives the gates which present a capacitive load (C \propto W L)

So, resonate the load to reduce power consumption

Design Questions

How to select W?

- W_{max} is set by smallest on-chip spiral inductor
- noise \propto 1 / W
- power \propto W
 - Decide LO power budget, then pick the inductor to meet this, and solve for W

Since it is necessary to resonate the gate capacitance, the LO drive will be sinusoidal, not square. A study of various sinusoidal drives and their effect on conversion gain is therefore important.

Model switches as time-varying conductances:

$$v_T(t) = \frac{g(t) - g(t - T_{LO}/2)}{g(t) + g(t - T_{LO}/2)} v_{rf}(t) = m(t)v_{rf}(t)$$

$$g_T(t) = \frac{g(t) + g(t - T_{LO}/2)}{2}$$

M(f _{LO}) FOR THE FOUR CASES		
Square Wave Drive	2/π	
Sine Wave Drive	2/π	
Break-Before-Make	$(2/\pi)\sqrt{1-r^2}$	0≤r≤1
Make-Before-Break	$\begin{cases} \frac{\sin^{-1}(r)/r + \sqrt{1 - r^2}}{\pi} \\ \frac{1}{2r} \end{cases}$	0≤r≤1 1 <r<∞< td=""></r<∞<>
	$r = \frac{ V_{th} - B_{LO} }{A_{LO}}$	

Equivalent system for mixer conversion gain when $g_T / C_L \ll 2\omega_{LO}$:

For a break-before-make sinusoidal drive, the conversion gain can approach unity.

Frequency Conversion: Die Photos

Waldo: 0.5µm CMOS (0.0084mm²)

Fastlane mixer (simplified, biasing incomplete)

Frequency Conversion: Fastlane Results

LO Frequency	1.40042GHz
RF Frequency	1.57542GHz
IF Frequency	175MHz
LO Amplitude	300mV (~ -3.5dBm in 100Ω)
IP3 (Input)	10dBm
1dB Compression (Input)	-5dBm
Noise Figure (SSB)	10dB
Voltage Conversion Gain	-3.6dB
Supply Voltage	1.5V
Technology	0.35µm CMOS
Die Area	0.84mm²

Waldo mixer

Frequency Conversion: Waldo Results

LO Frequency	1.57342GHz
RF Frequency	1.57542GHz
IF Frequency	2MHz
LO Amplitude*	2V (differential
IP3 (Input)*	9dBm
Noise Figure (SSB)**	6dB
Voltage Conversion Gain*	-3dB
Supply Voltage	2.5V
Technology	0.5µm CMOS
Die Area	0.0084mm²
* simulated	

** inferred from measured results

Frequency Synthesis

- Performance Metrics
- Architectures
- Aperture Phase Detector (APD)
 - Implementation
 - Modeling
- Die Photo + Measurement Results

Frequency Synthesis: Performance Metrics

- Power
 - Achieve desired performance with minimum power consumption
- Phase Noise
 - Use a PLL based architecture with a crystal reference and design a wideband loop
- Amplitude and Frequency of Spurs
 - Convert undesired signals to the intermediate frequency

 Aperture Phase Detector (APD) is a low power method for maintaining phaselock

J.F. Parker and D. Ray, "A 1.6-GHz CMOS PLL with on-chip loop filter," *IEEE J. Solid-State Circuits*, vol. 33, pp. 337-343, Mar. 1998.

Signal waveforms in a PLL with a divide-by-N block and a Phase/Frequency Detector

Signal waveforms in a PLL without the divide-by-N block using a Phase/Frequency Detector

Signal waveforms in a PLL without the divide-by-N block using an Aperture Phase Detector

Power *VCO* Synthesized Frequency Technology Die Area 36mW (2.5V) *26mW* 1.573GHz 0.5μm CMOS 3.1mm²

Frequency Synthesis: APD Implementation

Frequency Synthesis: APD Implementation

- Window is derived from the reference clock
 - fixed delay between window opening and reference edge
- Precharged gates only respond to first edge
 - subsequent VCO edges after first have no effect

Frequency Synthesis: APD Implementation

LTI model of PLL in lock

$$H(s) = \frac{\theta_v}{\theta_r} = \frac{NK_d K_o Z_F(s)}{Ns + K_d K_o Z_F(s)} \quad ; \quad K_d = \frac{I_p}{2\pi}$$

The loop filter contributes 2 poles and 1 zero to the forward path:

$$Z_F(s) = \frac{1 + sRC_1}{(C_1 + C_2)s\left(1 + s\frac{RC_1C_2}{(C_1 + C_2)}\right)}$$

The VCO contributes 2 poles to the forward path:

$$\frac{K_o}{s\left(1+\frac{s}{2\pi f_{3dB}}\right)}$$

$$H(s) = \frac{NK_{d}K_{o}(1 + sRC_{1})}{N(C_{1} + C_{2})s^{2}\left(1 + \frac{s}{2\pi f_{3dB}}\right)\left(1 + \frac{sRC_{1}C_{2}}{C_{1} + C_{2}}\right) + K_{d}K_{o}(1 + sRC_{1})}$$

The loop has seven parameters

Ν	Frequency ratio
K _d	Phase detector gain constant
K _o	VCO gain constant
R	Loop filter
C_1	Loop filter
C_2	Loop filter
f _{3dB}	VCO preamp 3dB bandwidth

Frequency Synthesis: Die Photo

Waldo test chip: 0.5µm CMOS

The loop has seven parameters: N, K_d , K_o , R, C₁, C₂, and f_{3dB} . These parameters are set as follows to generate the smooth curve on the previous slide:

- N is known
- K_o is taken from measured data
- R, C₁, and C₂ are taken to be their designed values
- f_{3dB} and K_d are fit

	calculated from technology data	fit
f_{3dB}	15MHz	15MHz
	simulated	fit
K_{d}	7.4uA/rad	6.6uA/rad

<u> PLL</u>

Loop Bandwidth f_{ref1}, f_{ref2} spurious f_{ref1} - f_{ref2} spur

VCO:

Gain Constant, K_o Tuning Range Phase Noise @ 35MHz Power Consumption

Total Power Consumption Technology Die Area 6MHz ≤ -40dBc ≤ -50dBc

2π(1.2*10⁹)rad/s/V 240MHz(±7.4%) ≤ -135dBc/Hz 26mW

36mW (2.5V supply) 0.5μm CMOS 3.1mm²

Conclusion: Contributions

- A new low power frequency conversion architecture that processes signals in the voltage domain
 - explored reactive terminations to improve mixer performance
 - a new understanding of the passive CMOS mixer
- A new low power frequency synthesis architecture eliminating the +N block for phaselock
 - new method of phase comparison
 - circuit implementation
 - modeling theory
- Incorporation of low power mixer and low power synthesizer into a low power, integrated CMOS GPS receiver front-end

Conclusion: Acknowledgements

Digital Equipment Corporation Dan Dobberpuhl

Rockwell International Chris Hull Paramjit Singh