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Abstract

An understanding of how device noise becomes phase noise
in practical oscillators is complicated by the presence of
nonlinearities (for amplitude stabilization), and by the fail-
ure of time invariance. This tutorial reviews the qualitative
insights of older (linear, time-invariant) models, and supple-
ments those with powerful additional insights provided by a
recently developed time-varying model. Among the most
significant are the importance of symmetry in suppressing
the upconversion of 1/f noise into noise near the carrier, and
an appreciation of cyclostationary effects.

Introduction
Circuit and device noise can perturb both the amplitude and
phase of an oscillator’s output. Because all practical oscilla-
tors possess some amplitude-limiting mechanism, amplitude
fluctuations are thus usually greatly attenuated. We therefore
focus exclusively on phase noise in this tutorial.

We begin by identifying some fundamental trade-offs
among key parameters, such as power dissipation, oscilla-
tion frequency, resonator Q and noise. After studying these
trade-offs qualitatively in a hypothetical ideal oscillator, we
consider quantitatively how various noise processes corrupt
the output spectrum of real oscillators.

General Considerations

A lossless resonator oscillates on its own, given some initial
energy. In practice, of course, all real resonators are lossy to
some extent (and we also presumably want to drive a load
eventually), so we need to arrange for a way to replace the
lost energy in order to make an oscillator. Suppose for the
moment that the resonator is connected to an energy restor-
ing element that has the remarkable (and unrealizable) prop-
erty that it is noiseless:

Noiseless Energy Restorer

FIGURE 1. “Perfectly efficient” RLC oscillator

The noiseless energy restorer here supplies just enough
energy to the tank to compensate for the dissipation by the
tank’s resistance, thereby leading to a constant amplitude
oscillation. The tank resistance is the only noisy element in
this model.

To gain some useful design insight, first compute the sig-
nal energy stored in the tank:
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so that the mean-square signal (carrier) voltage is:
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where we have assumed a sinusoidal waveform.
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The only source of noise in our idealized model is the tank
resistance. Its total mean-square noise voltage is found by
integrating its thermal noise density over the noise band-
width of the RLC filter:
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Combining Eqn. 2 and Eqn. 3, we obtain a noise-to-signal
ratio (the reason for this “upside-down” ratio is one of
convention, as will be seen shortly):
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Sensibly enough, one therefore needs to maximize the sig-
nal levels to minimize the noise-to-carrier ratio.

We may bring power consumption and resonator Q explic-
itly into consideration by noting that Q can be generally
defined as proportional to the energy stored, divided by the
energy dissipated:
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The power consumed by our “perfectly efficient” oscilla-
tor is simply equal to Py, the amount dissipated by the
tank loss. For such an oscillator, the noise-to-carrier ratio
is inversely proportional to the product of resonator Q and
the power consumed, and directly proportional to the
oscillation frequency. This set of relationships still holds
approximately for real oscillators, and explains the near
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obsession of engineers with maximizing resonator Q, for
example.

Detailed Considerations: Phase Noise

To augment the qualitative insights of the foregoing analy-
sis, let us now determine the actual output spectrum of the
ideal oscillator.

A. Phase Noise of an Ideal Oscillator

Assume that the output in Fig. 1 is the voltage across the
tank, as shown. The only source of noise is the white ther-
mal noise of the tank resistance, which we represent in
Norton form as a current source across the tank with a
mean-square spectral density of

= 4kTG N

where G is the reciprocal of the tank resistance.

This current noise becomes voltage noise when multiplied
by the impedance facing the current source. In computing
this impedance, however, it is important to recognize the
contribution of the energy restoration element. Since, by
postulate, the circuit oscillates with a constant amplitude,
the energy restoration element must contribute an average
effective negative resistance that just cancels the positive
resistance of the tank. Hence, the net result is that the effec-
tive impedance seen by the noise current source is simply
that of a perfectly lossless LC network.

For relatively small displacements Aw from the center fre-
quency ®,, the impedance of an LC tank may be approxi-
mated by
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We may write the impedance in a more useful form by
incorporating an expression for the unloaded tank Q:
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Solving Eqn. 9 for L and substituting into Eqn. 8 yields:
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All we’ve done is exchanged an explicit dependence on
inductance with a dependence on Q and G.
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Next, we multiply the spectral density of the mean-square
noise current by the squared magnitude of the tank imped-

ance to obtain the spectral density of the mean-square
noise voltage:
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The spectral density of the noise is now frequency depen-
dent because of the filtering action of the tank, and in fact
appears to increase without bound as the frequency
approaches ®,. Note also that an increase in tank Q
reduces the noise density, when all other parameters are
held constant, underscoring once again the value of
increasing resonator Q.

In our idealized LC model, thermal noise affects both
amplitude and phase, and Eqn. 11 accounts for both of
these effects. However, all practical oscillators employ
some form of amplitude limiting, as noted previously.
Consequently, phase fluctuations dominate in all well-
designed oscillators. The equipartition theorem of thermo-
dynamics tells us that, in equilibrium, noise energy splits
evenly between amplitude and phase domains. Amplitude
limiting thus removes half the noise given by Eqn. 11.

It is traditional to normalize the mean-square noise voltage
density to the mean-square carrier voltage, and report the
ratio in decibels, thereby explaining the “upside down”
ratios presented previously. Performing this normalization
yields the following equation for phase noise:
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We see that Eqn. 12 is thus proportional to the log of a
density. Its units are commonly expressed as “decibels
below the carrier per hertz”, or dBc/Hz, specified at a par-
ticular offset frequency Aw from the carrier frequency .
For example, one might speak of a 1GHz oscillator’s
phase noise as “-110dBc/Hz at a 100kHz offset.” It is
important to note that the “per Hz” actually applies to the
argument of the log, not to the log itself; doubling the
measurement bandwidth does not double the decibel quan-
tity. Misleading as “dBc/Hz” is, it is common usage (1).

Eqn. 12 tells us that phase noise (at a given offset)
improves as both the carrier power and @ increase, as pre-
dicted earlier. It also shows that the noise varies as the
inverse square of the frequency offset. These dependencies
make sense. Increasing the signal power improves the
ratio simply because the thermal noise is fixed, while
increasing Q (or the offset) improves the ratio quadrati-
cally because the tank’s impedance falls off as 1/QA, and
the square of the noise voltage is proportional to the
square of the impedance.
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Because of the many simplifying assumptions that have led
us to this point, real oscillators conform only approximately
to these expectations. It should not be surprising that there
are some significant differences between the spectrum pre-
dicted by Eqn. 12 and what one typically measures in prac-
tice. For example, although real spectra do possess a region
where the observed density is proportional to 1/(A(o)2, the
magnitudes are typically quite a bit larger than predicted by
Eqn. 12, mainly because there are additional important noise
sources in practical oscillators besides than tank loss. For
example, any physical implementation of an energy restora-
tion device will contain noisy elements. Furthermore, mea-
sured spectra eventually flatten out for large frequency
offsets, rather than continuing to drop quadratically. Such a
floor may be due to the noise associated with any active ele-
ments (such as buffers) placed between the tank and the out-
side world, or it can even reflect limitations in the
measurement instrumentation itself. Even if the output were
taken directly from the tank, any resistance in series with
either the inductor or capacitor would impose a bound on
the amount of filtering provided by the tank at large fre-
quency offsets and thus ultimately produce a noise floor.

Finally, there is almost always a l/(A(x))3 region at small off-
sets. In an effort to account for all three discrepancies, Lee-
son proposed a widely used, but ultimately ad hoc,
modification to Eqn. 12 (2):
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His modifications to Eqn. 12 consist of a factor F to account
for the increased noise in the 1/(A(I))2 region, an additive
factor of unity (inside the braces) to account for the noise
floor, and a multiplicative factor (the term in the second set
of parentheses) to provide a 1/|A(JJ!3 behavior at sufficiently
small offset frequencies. With these modifications, the phase
noise spectrum appears as follows:
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FIGURE 2. Phase noise: Leeson vs. Eqn. 12

Here, the factor F is empirical and therefore must be deter-
mined from measurements, diminishing greatly the predic-
tive power of the phase noise equation. Furthermore, the
Leeson model asserts that Aw,,3, the boundary between
the 1/(A(1))2 and l/lA(Ju)l3 regions, is precisely equal to the 1/
f corner of device noise. However, measurements fre-
quently show no such equality, and thus one must gener-
ally treat Awy3 as an empirical fitting parameter as well.
Finally, the frequency at which the noise flattens out is not
always equal to half the resonator bandwidth, ©,/2Q.

Both the ideal oscillator model and the Leeson model sug-
gest that increasing resonator Q and signal amplitude are
the only ways to reduce phase noise. Unfortunately, noth-
ing in Leeson’s model guides us in the computation or
reduction of F, and we have already noted that Aw; 3 is an
empirical factor as well.

That neither Eqn. 12 nor Eqn. 12 can make quantitative
predictions about phase noise tells us that at least some of
the assumptions used in the derivations are invalid, despite
their apparent reasonableness. To develop a correct theory,
we need to revisit and revise these assumptions.

A Linear, Time- Varying (LTV) Phase Noise Theory
The foregoing derivations have all assumed linearity and
time invariance. Let’s reconsider each of these assump-
tions in turn.

Nonlinearity is clearly a fundamental property of all real
oscillators, as it is necessary for amplitude limiting. Sev-
eral phase noise theories have consequently attempted to
explain certain features of phase noise as a consequence of
nonlinear behavior. One of these features is that a single-
frequency sinusoidal disturbance injected into an oscillator
gives rise to two distinct sidebands, symmetrically dis-
posed about the carrier, and with equal amplitudes. Since a
linear, time-invariant (LTI) system can only produce
responses at the same frequencies as those of the input,
and nonlinearities are well known to exhibit behavior
qualitatively similar to that observed, nonlinear mixing
has been proposed to explain the sidebands and, by exten-
sion, phase noise. Unfortunately, this facile chain of rea-
soning implies that the amplitude of the sidebands must
then depend nonlinearly on the amplitude of the injected
signal, and this dependency is simply not observed (except
at absurdly large injection amplitudes). We must conclude,
therefore, that nonlinear phenomena cannot explain the
discrepancies observed between the Leeson model and
real oscillator behavior, despite their initial attractiveness
as the culprit.

As we shall see momentarily, nonlinearities affect phase
noise only incidentally, through controlling the detailed
shape of the output waveform. An important insight is that
both amplitude and phase disturbances are perturbations
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superimposed on the main oscillation. They will always be
much smaller in magnitude than the carrier in any oscillator
worth designing or analyzing. Thus, if a certain amount of
injected noise produces a certain amount of amplitude or
phase disturbance, we ought to expect that doubling the
injected noise would produce double the disturbance. Thus
linearity would appear to be a reasonable assumption as far
as the noise-to-phase transfer function is concerned, so we
will continue to invoke it. As with all assumptions, this one
must be tested (and we will do so).

We are left only with the assumption of time invariance to
reexamine. Here we consider time invariance to extend to
the noise sources themselves, where previously we have
implicitly assumed stationarity, meaning that the measures
that characterize noise (e.g., spectral density) are time-
invariant. In contrast with linearity, the assumption of time
invariance is less obviously defensible. In fact, it is surpris-
ingly simple to demonstrate that oscillators are fundamen-
tally time-varying systems. Recognizing this truth is the
main key to developing a correct theory of phase noise (3).

To show that time-invariance fails to hold, consider explic-
itly how an impulse of current affects the waveform of the
simplest resonant system, a lossless LC tank:

1
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FIGURE 3. LC oscillator excited by current pulse

Assume that the system is oscillating with some constant
amplitude until the impulse occurs, then consider how the
system responds to an impulse injected at two different
times:
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FIGURE 4. Impulse responses of LC tank

If the impulse happens to coincide with a voltage maximum
(as in the upper plot), the amplitude increases abruptly by an
amount AV = AQ/C, but because the response to the impulse
superposes exactly in phase with the pre-existing oscillation,
the timing of the zero crossings does not change. On the

other hand, an impulse injected at some other time gener-
ally affects both the amplitude and the timing of the zero
crossings, as in the lower plot. Interpreting the zero-cross-
ing timings as a measure of phase, we see that the amount
of phase disturbance for a given injected impulse depends
on when the injection occurs; time-invariance thus fails to
hold. An oscillator is therefore a linear, but (periodically)
time varying (LTV) system.

To the extent that linearity remains a good assumption, the
impulse response still completely characterizes the sys-
tem, even with time variation thrown in. Noting that an
impulsive input produces a step change in phase, the
impulse response may be written as:

I'(0,7)

h¢(t, 1) = u(t—1) a4

qmax

where u(t) is the unit step. Dividing by g,,,,,, the maximum
charge displacement across the capacitor, makes the func-
tion I'(x) independent of signal amplitude. I'(x) is called
the impulse sensitivity function (ISF), and is a dimension-
less, frequency- and amplitude-independent function peri-
odic in 2. As its name suggests, it encodes information
about the sensitivity of the system to an impulse injected
at phase ®,7. In our example of the LC oscillator, I'(x) has
its maximum value near the zero crossings of the oscilla-
tion, and a zero value at maxima of the oscillation wave-
form. In general, it is most practical to determine T'(x)
through simulation, but there are also analytical methods
that apply in special cases (4). In any event, to develop a
feel for typical shapes of ISFs, consider two representative
examples, first for an LC oscillator:
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FIGURE 5. Example ISF for LC oscillator

Note that, in this case, the ISF is approximately propor-
tional to the derivative of the oscillation waveform itself, a
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relationship that holds crudely even for other types of oscil-
lators:

Vout(t)
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FIGURE 6. Example ISF for ring oscillator

Once the ISF has been determined (by whatever means), we
may compute the excess phase through use of the superposi-
tion integral. This computation is valid here since superposi-
tion is linked to linearity, not time invariance:

max
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To cast this equation in a more practically useful form, note
that the ISF is periodic and therefore expressible as a Fou-
rier series:

o had
(o) = -2_+ 2 c,cos (n® T+8,) (16)
n=1
where the coefficients ¢, are real, and 6, is the phase of the
nth harmonic of the ISF. We will ignore 6,, in all that follows
because we will be assuming that noise components are
uncorrelated, so that their relative phase is irrelevant.

The value of this decomposition is that, like many functions
associated with physical phenomena, the series typically
converges rapidly, so that it is often well approximated by
just the first few (e.g., two) terms of the series.

Substituting the Fourier expansion into Eqgn. 15, and
exchanging summation and integration, one obtains:
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This equation allows us to compute the excess phase caused
by an arbitrary noise current injected into the system, once
the Fourier coefficients of the ISF have been determined.

Earlier, we noted that signals (noise) injected into a non-
linear system at some frequency may produce spectral
components at a different frequency. We now show that a
linear, but time-varying system can exhibit qualitatively
similar behavior. To demonstrate this property explicitly,
consider injecting a sinusoidal current whose frequency is
near an integer multiple, m, of the oscillation frequency, so
that

i() =1 cos[(mo +Aw®)!] (18)

where A® << . Substituting Eqn. 18 into Eqn. 15 and
noting there is a negligible net contribution to the integral
by terms other than when n = m, one obtains the following
approximation:

Imcmsin (Awt)
e — 19
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The spectrum of ¢(#) therefore consists of two equal side-
bands at +Aw, even though the injection occurs near some
integer multiple of w,. We see that we do not need to
invoke nonlinearity to explain this frequency conversion
(or “folding”). This observation is fundamental to under-
standing the evolution of noise in an oscillator.

Unfortunately, we’re not quite done: Eqn. 19 allows us to
figure out the spectrum of ¢(#), but we ultimately want to
find the spectrum of the output voltage of the oscillator,
which is not quite the same thing. The two quantities are
linked through the actual output waveform, however. To
illustrate what we mean by this linkage, consider a specific
case where the output may be approximated as a sinusoid,
so that v,,(f) = cos [0,t+¢(#)]. This equation may be con-
sidered a phase-to-voltage converter; it takes phase as an
input, and produces from it the output voltage. This con-
version is fundamentally nonlinear because it involves the
phase modulation of a sinusoid.

Performing this phase-to-voltage conversion, and assum-
ing “small” amplitude disturbances, we find that the sin-
gle-tone injection leading to Eqn. 19 results in two equal-
power sidebands symmetrically disposed about the carrier:

Imcm :
P Aw) =10 - log | ——— 20
spc (D) e o Am (20
max
To distinguish this result from nonlinear mixing phenom-
ena, note that the amplitude dependence is linear (the
squaring operation simply reflects the fact that we are
dealing with a power quantity here).

The foregoing result may be extended to the general case
of a white noise source:
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Peyc(Aw) =10 log | —"=0 @1)

Eqn. 21 implies both upward and downward frequency
translations of noise into the noise near the carrier, as illus-
trated in the following figure:
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FIGURE 7. Evolution of circuit noise into phase noise

This figure summarizes what the foregoing equations tell us:
Components of noise near integer multiples of the carrier
frequency all fold into noise near the carrier itself.

Noise near DC gets upconverted, weighted by coefficient cg,
so 1/f device noise becomes 1/noise near the carrier; noise
near the carrier stays there, weighted by c;; and white noise
near higher integer multiples of the carrier undergoes down-
conversion, turning into noise in the 1/f2 region. Note that
the 1/ shape results from the integration implied by the
step change in phase caused by an impulsive noise input.
Since an integration (even a time-varying one) gives a white
voltage or current spectrum a 1/f character, the power spec-
tral density will have a 1// shape.

It is clear from Fig. 7 that minimizing the various coeffi-
cients ¢, (by minimizing the ISF) will minimize the phase
noise. To underscore this point quantitatively, we may use
Parseval’s theorem to write:

oo 2r
1
Y el = | IT(0)|%dx = 212 22)
n=0 0

so that the spectrum in the l/f2 region may be expressed
as:

Z
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where I, is the rms value of the ISF. All other factors
held equal, reducing I',,,,; will reduce the phase noise at all
frequencies. Eqn. 21 (or Eqn. 23) is the rigorous equation
for the 1/j2 region, and is one key result of the LTV model.
Note that, unlike the Leeson model, no empirical curve-fit-
ting parameters are present in Eqn. 21.

Among other attributes, Eqn. 21 allows us to study quanti-
tatively the upconversion of 1/f noise into close-in phase
noise. Noise near the carrier is particularly important in
communication systems with narrow channel spacings. In
fact, the allowable channel spacings are frequently con-
strained by the achievable phase noise. Unfortunately, it is
not possible to predict close-in phase noise correctly with
LTI models.

This problem disappears if the LTV model is used. Specif-
ically, assume that the current noise behaves as follows in
the 1/fregion:

2 2 Qi
i =i —
n, 1/f n A®

where ®; is the 1/f corner frequency. Substitution into
Eqn. 21 gives us

24

L(&w) = 10-log| —2—u . X (25)

which describes the phase noise in the l/f3 region. The 1/]3
corner frequency is then

CO (CO ]2
Aw =00 —— =0 |~ (26)
/7 f 41..3’” 1/f ¢
from which we see that the 1/]3 phase noise corner is not
necessarily the same as the 1/f device/circuit noise corner;
it will generally be lower. In fact, since ¢ is the DC value
of the ISF, there is a possibility of reducing by large fac-
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tors the 1/]‘3 phase noise corner. The ISF is a function of the
waveform, and hence potentially under the control of the
designer. This result is not anticipated by LTI approaches,
and is one of the most powerful insights conferred by this
LTV model. This result has particular significance for tech-
nologies with notoriously poor 1/f noise performance, such
as CMOS and GaAs MESFETs. A specific circuit example
of how one may exploit this observation follows shortly.

One more extremely powerful insight concerns the influence
of cyclostationary noise sources. In most oscillators, the
noise sources cannot be well modeled as stationary. A typi-
cal example is the nominally white collector shot noise (or
MOSFET drain current noise), which vary because device
currents vary periodically with the oscillating waveform.
The LTV model is able to accommodate a cyclostationary
white noise source with ease, since such a source may be
treated as the product of a stationary white noise source and
a periodic function:

NOERNORCTCR) @7

Here, i, is a stationary white noise source whose peak
value is equal to that of the cyclostationary source, and ot(x)
is a periodic function with a peak value of unity. Substitut-
ing this into Eqn. 15 allows us to treat cyclostationary noise
as a stationary noise source provided we define an effective
ISF as follows:

Fef(x) =T (x) - o(x) (28)

Thus, none of the foregoing conclusions changes as long as
[gfris used in all of the equations.

Having identified the factors that influence oscillator noise,
we’re now in a position to articulate the requirements that
must be satisfied to make a good oscillator. First, note that
an active device is always necessary to compensate for tank
loss, and that active devices always contribute noise. Note
also that the ISFs tell us that there are sensitive and insensi-
tive moments in an oscillation cycle. Of the many possible
ways that an active element could return energy to the tank,
then, this energy should be'delivered all at once, at the peak
of the tank voltage, where the ISF has its minimum value. In
an ideal oscillator, therefore, the transistor would deliver an
impulse of current at the peak(s), then go into a coma each
cycle. The extent to which real oscillators approximate this
behavior determines the quality of their phase noise proper-
ties. Since an LTI theory treats all instants as equally impor-
tant, such theories are unable to anticipate this important
result.

Let us examine a typical oscillator, now that we have
developed these insights:
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FIGURE 8. Colpitts oscillator (simplified)

The relevant waveforms for this oscillator appear approxi-
mately as follows:
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FIGURE 9. Approximate incremental tank voltage and drain current for
Colpitts oscillator

Note that the drain current flows only during a short inter-
val coincident with the peaks of the tank voltage. Hence, a
Colpitts oscillator approximates ideal behavior. Its corre-
sponding excellent phase noise properties account for the
popularity of this configuration. It has long been known
that the best phase noise occurs for a certain narrow range
of tapping ratios (e.g., a 4:1 capacitance ratio), but before
the LTV theory, no theoretical basis existed to explain a
particular optimum.

As an example of a circuit that does not well approximate
ideal behavior, consider a ring oscillator. First, the “reso-
nator” Q is poor; in fact, it is unity, since the energy stored
in the node capacitances is reset (discharged) every cycle.
Hence, if the resonator of a Colpitts oscillator is a fine
wine glass, the resonator of a ring oscillator is a lump of
clay. Next, energy is restored to the resonator during the
edges (the worst possible times), rather than the voltage
maxima. These factors account for the well-known terrible
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phase noise performance of ring oscillators. As a conse-
quence, ring oscillators are found only in the most non-criti-
cal applications, or inside wideband PLLs that clean up the
spectrum.

Circuit Examples

We close with two brief examples that underscore important
design insights. First, both LTI and the LTV models point
out the value of maximizing signal amplitude. To evade sup-
ply voltage or breakdown constraints, one may employ a
tapped resonator to decouple resonator swings from device
voltage limitations. A common configuration that does so is
the Clapp modification to the Colpitts oscillator:

Vpp

FIGURE 10. Clapp oscillator

Differential versions of this oscillator have recently made an
appearance in the literature, without explicit reference to
Clapp, or an explanation that its advantage derives from the
tapped resonator configuration to allow an increase in signal
energy (5).

It was stated earlier that a key insight of the LTV theory con-
cerns the importance of symmetry. A configuration that
exploits this knowledge is the symmetrical negative resis-
tance oscillator (6):

FIGURE 11. Simple symmetrical negative resistance oscillator

This configuration is not new, but an appreciation of its
symmetry properties is. Here, it is the half-circuit symme-
try that is important, because noise in the two half circuits
is only partially correlated at best. By selecting the relative
widths of the PMOS and NMOS devices appropriately to
minimize the DC value of the ISF for each half-circuit,
one may minimize the upconversion of 1/f noise. Through
exploitation of symmetry in this manner, the 1/fac6rner
can be dropped to exceptionally low values (below
100Hz), even though device 1/f noise corners may be well
above 10-100kHz. As a result, a phase noise of —121dBc¢/
Hz at an offset of 600kHz has been obtained with on-chip
spiral inductors at 1.8GHz, on 6mW of power consump-
tion in a 0.25um CMOS technology (6). This result rivals
what one may achieve with bipolar technologies.

Summary

The insights gained from LTI phase noise models are sim-
ple and intuitively satisfying: One should maximize signal
amplitude and resonator Q. An additional, implicit insight
is that the phase shifts around the loop generally must be
arranged so that oscillation occurs at or very near the cen-
ter frequency of the resonator. This way, there is a maxi-
mum attenuation by the resonator of off-center spectral
components.

Deeper insights provided by the LTV model are that the
resonator energy should be restored impulsively at the
voltage maximum, instead of evenly throughout a cycle,
and that the DC value of the effective ISF should be made
as close to zero as possible to suppress the upconversion
of 1/f noise into close-in phase noise.
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